(LTE Air Interface)
LONG TERMS EVOLUTION

1) - LTE Introduction

1.1: Overview and Objectives

1.2: User Expectation

1.3: Operator expectation

1.4: Mobile Broadband Evolution: the roadmap from HSPA to LTE

1.5: Technology comparison

- IEEE
- 3GPP
- 3GPP2

1.6: 3G Vs 4G Technology comparison

1.7: Requirements of LTE

- Peak data rate
- Up to 200 active users in a cell (5 Megahertz)
- Less than 5 millisecond user-plane latency

1.8: LTE Vs UMTS Network Architecture

1.9: LTE Network Architecture

1.10: Orthogonal frequency division multiplexing (OFDM)

1.11: Overview of LTE air interface

- MIMO
- HARQ

1.12: Key Features of LTE

- LTE uses adaptive modulation and coding
- LTE uses Advanced MIMO spatial multiplexing techniques
- LTE supports both FDD and TDD
- LTE offers scalable bandwidths.

1.13: FDD and TDD
1.14: FDD and TDD Bands
1.15: Terminals, modules and fixed wireless terminals
1.16: LTE UE Categories
1.17: LTE specification work
1.18: LTE Standard Specification

2) - EPS Architecture

2.1: Overview and Objectives
2.2: System Architecture Evolution (SAE)-Targets
2.3: Architecture Evolution
2.4: EPS Network Architecture
 - User Equipment (UE)
 - Evolved UTRAN (E-UTRAN)
 - Evolved Packet Core Network (EPC)
 - Services domain
2.5: Functionality of e-NodeB & UE
2.6: Functionality of MME
2.7: Functionality of S-GW
2.8: Functionality of P-GW
2.9: Functionality of PCRF
2.10: Functionality of HSS
2.11: Roaming in Basic System Architecture Configuration
2.12: EPS Roaming Architecture
 - Home Routed model
 - Local Breakout model
2.13: EPS inter-working with 2G/3G Networks
2.14: 3GPP and Non-3GPP Inter-working
2.15: EPS inter-working with Non-3GPP access technologies
3) - Traffic Mobility & Management

3.1: Overview and Objectives

3.2: EPS Network Identifiers

3.3: Tracking area update concept

- Tracking area
- Routing area

3.4: EPS Mobility Management (EMM) states

- Emm-Deregistered
- Emm-Registered

3.5: EPS connection management (ECM) state

3.6: RRC states in E-UTRAN

- RRC_IDLE state
- RRC_CONNECTED state

3.7: EPS bearer service architecture

3.8: EPS bearer services: Default bearer

3.9: EPS bearer services: Dedicated bearer

3.10: SAE Bearer QoS Awareness

3.11: SAE Bearer QoS Attributes

- GBR (Guaranteed Bit Rate) or NGBR (Non-Guaranteed Bit Rate)
- Maximum Bit rate(MBR)
- Label or QoS class Identifier(QCI)

3.12: QoS Class Identifier (QCI) Characteristic

- Resource type
- Priority
- Packet delay budget
- Packet loss rate

3.13: LTE / SAE Handover

3.14: LTE / SAE Handover principles

- Handover preparation
3.15: Handover Preparation
3.16: Handover Execution
3.18: Inter-system Handovers
3.19: Differences in E-UTRAN and UTRAN Mobility
3.20: Policy and Charging Control (PCC)
3.21: Basic Policy and Charging Control (PCC)
3.22: PCC in roaming with PMIP: home routed model
3.23: PCC in roaming: local breakout model

4) - Air Interface (OFDMA & SCFDMA)

4.1: Overview and Objectives
4.2: Duplexing and Multiple Access
 - Orthogonal Frequency Division Multiple Access (OFDMA)
 - Single Carrier Frequency Division Multiple Access (SC-FDMA)

4.3: LTE Multiple Access Background: Single Transmitter
4.4: LTE Multiple Access Background: FDMA Principle
4.5: LTE Multiple Access Background: Multi-carrier Principle
4.6: Orthogonal Frequency Division Multiplexing (OFDM) principle
4.7: OFDM: Nutshell
4.8: OFDM: Frequency- Time Representation
4.9: OFDM and FFT / IFFT
4.10: Motivation for OFDMA in LTE
4.11: Solution to ISI: Cyclic Prefix
4.12: Cyclic Prefix: Short & Long
4.13: OFDM Transmitter and Receiver
4.14: OFDM Key Parameters
Variable Bandwidth (BW)
Subcarrier Spacing (Δf = 15 Kilohertz)

4.15: OFDM Key Parameters 2

4.16: OFDM Key Parameters - Fast Fourier Transform size (Nfft)

4.17: OFDM Key Parameters - Sampling rate (fs)

4.18: OFDM Key Parameters for FDD and TDD Modes

4.19: OFDMA Challenges
 - Tolerance to frequency offset
 - High Peak-to-Average power ratio (PAPR)

4.20: SC-FDMA

4.21: OFDMA vs SC-FDMA: QPSK Example

4.22: SC-FDMA: Multiplexing

4.23: SC-FDMA Transmitter and Receiver

4.24: LTE/EUTRAN: Bandwidth Distribution

4.25: LTE Resource Grid, Resource Block, Resource Element

4.26: The Usage of Resource Element (RE)

4.27: LTE Duplexing – FDD / TDD

4.28: LTE Frame Structure: Generic

4.29: Radio Frame Type 1 - FDD

4.30: Radio Frame Type 2 - TDD

4.31: Fields in Special Subframe: DwPTS, GP and UpPTS

4.32: TDD Radio frame configurations (DL/UL)

4.33: Special Subframe configurations (No. of OFDM symbols)

4.34: Different Methods for OFDM Multiple Access
 - Plain OFDM
 - Time Division Multiple Access via OFDM
 - Frequency Division Multiple Access via OFDM
 - Orthogonal Frequency Division Multiple Access OFDMA registered

5) - MIMO
5.1: Overview and Objectives

5.2: Aspirations

5.3: Conventional (Single) & New(Multiple) Antenna Configurations

5.4: MIMO System Model (Principle)

5.5: Multiple Antenna Arrangements
 - single input and single output arrangement (SISO)
 - multiple input and single output arrangement (MISO)
 - single input and multiple output arrangement (SIMO)
 - multiple inputs and multiple output arrangement (MIMO)

5.6: MIMO Design Criterion
 - Spatial Multiplexing Gain
 - Transmit Diversity Gain

5.7: Overview of physical channel processing - transmitter side
 - Layer mapping
 - Precoding

5.8: Example of MIMO Usage

5.9: Summary

6) - Protocol, Interface & Channel

6.1: Overview and Objectives

6.2: LTE Interfaces

6.3: Interfaces & Protocols in EPS Network-Control Plane

6.4: UE’s Direct Communication with MME
 - EPS Mobility Management (EMM)
 - EPS Session Management (ESM)

6.5: Radio Interface
 - Radio Resource Control (RRC)
 - Packet Data Convergence Protocol (PDCP)
 - Radio Link Control (RLC)
 - Medium Access Control (MAC)
 - Physical Layer (PHY)

6.6: Interfaces & Protocols in EPS Network-Control Plane
6.7: Interfaces & Protocols in EPS Network-Control Plane
- GPRS Tunnelling Protocol, Control Plane (GTP-C)
- UDP/IP transport
- Proxy Mobile IP (PMIP)
- IP

6.8: Interfaces & Protocols in EPS Network-User Plane
- GPRS Tunnelling Protocol, User Plane (GTP-U)
- Generic Routing Encapsulation (GRE)

6.9: X2 Interface & its Protocols in Control & User Planes

6.10: Details of Protocols

6.11: LTE Channel Architecture

6.12: LTE Downlink Channels

6.13: LTE Downlink Logical Channels
- Paging Control Channel (PCCCH)
- Broadcast Control Channel (BCCH)
- Common Control Channel (CCCH)
- Dedicated Control Channel (DCCH)
- Dedicated Traffic Channel (DTCH)
- Multicast Control Channel (MCCH)
- Multicast Traffic Channel (MTCH)

6.14: LTE Downlink Transport Channels
- Paging Channel (PCH)
- Broadcast Channel (BCH)
- Multicast Channel (MCH)
- Downlink Shared Channel (DL-SCH)

6.15: LTE Downlink Physical Channels
- Physical Downlink Shared Channel (PDSCH)
- Physical Downlink Control Channel (PDCCH)
- Physical Hybrid ARQ Indicator Channel (PHICH)
- Physical Broadcast Channel (PBCH)
- Physical Multicast Channel (PMCH)

6.16: LTE Uplink Channels

6.17: LTE Uplink Logical Channels
- Common Control Channel (CCCH)
6.18: LTE Uplink Transport Channels
- Random Access Channel (RACH)
- Uplink Shared Channel (UL-SCH)

6.19: LTE Uplink Physical Channels
- Physical Radio Access Channel (PRACH)
- Physical Uplink Shared Channel (PUSCH)
- Dedicated Traffic Channel (DTCH)

6.20: Additional Physical Channel Types
- PCFICH (Physical Control Format Indicator Channel)
- DL Synchronization Signal
- DL Reference Signal
- Demodulation Reference Signal
- Sounding Reference Signal

7) - Radio Procedure

7.1: Overview and Objectives

7.2: LTE Measurements
- UE measurements
- eNB measurements
- Standardized

7.3: CQI Measurements

7.4: Handover Measurements

7.5: HO events
- Intra RAT
- Inter RAT

7.6: Timing Advance

7.7: Cell Search

7.8: Network & Cell Selection

7.9: PLMN Selection

7.10: Cell Selection and Reselection
7.11: Random Access-Initial Access

7.12: Random Access Procedure
- Contention Based Random Access Procedure
- Contention Free Random Access

7.13: Paging

7.14: Power Control
- Uplink Power Control
- In Downlink Power Control

8) – Radio Resource Management

8.1: Overview and Objectives

8.2: Relationship between scheduling, link adaptation and hybrid ARQ

8.3: Scheduling

8.4: Scheduling and Multiuser Diversity

8.5: A typical single-cell cellular radio system

8.6: Scheduling Schemes
- Round Robin Scheduling
- Maximum Rate Scheduling
- Proportionally Fair Scheduling

8.7: Link Adaptation

8.8: CQI Table

8.9: Link Adaptation and Spectral Efficiency Maximization

8.10: HARQ Procedure